
Journal of Physics and Advanced Applications
Volume 1 | Issue 1

Research Article Open Access

https://journalofphysics.net

Research Article

Mixing Patterns in Worldwide Earthquake Networks
Jennifer Ribeiro1,2, Paulo Oliveira1,3 and Douglas Ferreira1*

1LISComp Laboratory, Federal Institute of Rio de Janeiro - Paracambi, RJ, Brazil
2Federal Rural University of Rio de Janeiro - Seropedica, RJ, Brazil
3Fluminense Federal University - Niterói, RJ, Brazil

Received Date: June 02, 2020; Accepted Date: June 16, 2020; Published Date: June 17, 2020

Abstract
In this work, we have studied the assortativity of worldwide earthquake networks. We have used data from the worldwide 

earthquake catalog for the period between 2002 and 2016 of earthquakes with magnitude m ≥ 4.5. The study was conducted for 
two different networks: the first one using data of shallow earthquakes (depth up to 70km) and the second constructed for deep 
events (depth greater than 70km), both for the world. We calculated the average nearest neighbors’ degree of nodes (ANND) 
distribution and the degree correlation coefficient (DCC) for both networks. It was observed that the network of shallow events 
is assortative. The same result was found in previous studies for networks of earthquakes from California and Japan, and also for 
networks of earthquakes produced by computer simulations. The network of deep earthquakes was found to be neutral. Our results 
contribute to the understanding of the seismological dynamics and features. 
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Introduction

In the last years, several works have implemented the concept 
of complexity in the study of earthquakes, aiming to better 
understand and characterize the seismological dynamics and 
properties. Complex networks are a powerful tool for investigating 
the topological structure and statistical properties of complex 
systems and have been applied in many real-world networks, such 
as economic market, internet, spread of diseases, solar flares and 
social relationships [1-7]. 

Some of the most common features of networks, that have 
fundamental implications on the networks dynamics, are the 
clustering coefficient, the average shortest path and the degree 
distribution. However, another crucial characteristic to be studied 
is the networks’ assortativity, which shows the likelihood of a node 
with degree k to be connected to other nodes of the same degree k. 
For example, in social networks it is observed that people tend to 
relate to other people belonging to the same group as themselves 
[7] and for this reason this network is assortative. However, the 
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protein-interaction network of yeast has the opposite property: 
it is disassortative [8]. The proteins with larger values of degree 
interacts much more with small-degree proteins. This way, the 
study of degree correlation is relevant, since it can describe the 
robustness of a network against selective node failure [9,10].

In [11,12], the authors created a model where they have 
constructed an earthquake network using a successive model 
for creating the links between the nodes for seismic data from 
California and Japan. They found that these networks were small-
world and scale-free. Moreover, the same authors analyzed these 
networks in respect to their assortative mixing [13], and found 
that they are assortative. This characteristic was also found for 
the network using earthquake data produced by the Olami-Feder-
Christensen model (known as the OFC model) [14]. Intending to 
study earthquakes from the whole world and not just of a small 
region, in [15] it was constructed a complex network of global 
earthquakes, where the authors found that this network was 
also scale-free and small-world, showing evidence of long-range 
correlations across the planet.
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In order to corroborate the understanding of the phenomenon 
of earthquakes and to observe the agreement between the results 
found for specific regions of the world and in a global perspective, 
in this paper we analyze the assortativity of the network created 
for worldwide earthquakes using the successive model of 
connections for two datasets: one network of shallow earthquakes 
and one network of deep earthquakes. This division aims to make 
comparisons between earthquakes with similar seismic origins.

This paper is organized as follows. First, we present information 
about assortative mixing, the degree correlation coefficient (DCC) 
and the average nearest neighbors’ degree of nodes (ANND). In the 
sequence, we give information about our worldwide earthquake 
data, as well as the method employed to construct our networks. 
We then calculate the DCC and ANND for the networks and discuss 
the results. Finally, we end with the conclusions.

Assortative mixing in networks

The study of assortativity in networks has been implemented in 
many different real-world networks in the last years. The analysis 
of this property is an important tool to investigate the preference 
of a k-degree node to be connected to another node that has 
degree k. When it happens, the network is said to have assortative 
mixing. When the preference is the opposite, i.e. the nodes prefer 
to be connected to others with different degree value, then this 
network is disassortative. If the nodes do not have a preference of 
connection, the network is classified as neutral [9].

Two statistical measures that are commonly used to analyze 
this preference are the average nearest neighbors’ degree of nodes 
(ANND) [16,17] and the degree correlation coefficient (DCC) [7,9]. 
The ANND or the degree correlation function is expressed a

where P(j│k) is the conditional probability that an arbitrary 
selected edge links a j-degree node with a k-degree node. This 
function considers the average degree of the neighbors of a node as 
a function of its degree k. If it is independent of k, the network has 
no obvious correlation of degree. As reported in [17], it is possible 
to approximate the ANND to 

where the sign of the correlation exponent µ determines the 
behavior of degree correlation. For assortative networks, the 
correlation exponent is positive (µ > 0) and for disassortative 
networks it is negative (µ < 0). When µ = 0, ( )nnk k  presents no 
dependence with k.  

The DCC (which is the Pearson correlation coefficient 
between the degrees found at the two end of the same link) is a 
complementation of the analysis of degree correlation and gives to 
us a quantitative characterization. With this coefficient it is possible 
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to know if the network is assortative, disassortative or neutral, but 
also represents the strength of this correlation. We calculate this 
coefficient by

where qk is the probability of existing a node with degree k at 
the end of a randomly selected edge and

is the variance of kq . The value of r varies from -1 (perfect 
disassortativity) to 1 (perfect assortativity). If 0r = , then the network 
has no assortative (or disassortative) mixing and, therefore, is 
neutral.

Method

Following the definition used in [15] for the vertices of the 
worldwide epicenters network, we divide the planet into equal 
square cells of size L x L, with L= 20km, and a cell becomes a vertex 
of the network every time the epicenter of an earthquake is located 
therein. To create the links between the vertices, we used the 
successive model employed in [11,12,15]. It basically consists of 
connecting a vertex to its subsequent one in the temporal order by 
a directed edge. 

The dataset used in our study was obtained from the World have of 
Earthquakes of Advanced National Seismic System (ANSS)b  (https://
earthquake.usgs.gov/data/comcat/) and it covers earthquakes from 
the entire world between 2002 and 2016. For the record, we only 
considered earthquakes with magnitude (m) larger or equal to 4.5, 
because in that catalog the events with magnitudes less than 4.5 are 
not completely registered for the whole world. The total of events 
is 101746, where 80520 are shallow earthquakes (earthquakes 
with depth up to 70km) and 21226 are deep earthquakes (events 
occurred at depths greater than 70 km).

We built a network for each of these two datasets and applied 
the equations exposed in the previous section. The results obtained 
is shown in the next section. 

Results and Discussion

From equation (1), we constructed the ANND distribution, 
using the in-degree of the vertices, for our networks. In Figure. 1, we 
can observe that the degree correlation function of the network of 
shallow earthquakes has an increasing trend, i.e., Knn(k) increases 
with k, which means that vertices with larger (lower) connections 
tend to connect with vertices with larger (lower) numbers of 
connections.  It means that this network is assortative, as it was 
found for networks using the Olami-Feder-Christensen model [14] 
and for networks of earthquakes from California and Japan [13]. It 
is worth mentioning that most earthquakes that occur in Japan and 
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California have depth up to 70km (shallow earthquakes). Figure 2 
presents the result for the network of deep earthquakes, where the 
correlation exponent is µ~0, meaning that this network is neutral.

Figure 1: Average nearest neighbors’ degree of nodes knn (k) 
(for in-degree) for the network of shallow earthquake. The 
correlation exponent is positive (µ > 0), which means that this 
network is assortative.

Figure 2: The average nearest neighbors’ degree of nodes knn 
(k) (for in-degree) for the network of deep earthquakes. No 
degree correlation between the nodes was found, since µ ~ 0. 
This network is neutral.

The degree correlation coefficient (DCC) was calculated for each 
of our networks and the values are shown in Table 1. As it can be 
seen, the network of shallow earthquakes presents a positive value 
for the DCC (r = 0.193), while the network of deep earthquakes has 
a value r ~ 0. Again, the values obtained for the degree correlation 
coefficient results in an assortative mixing in the shallow global 
earthquakes network and no degree correlation in the deep global 
earthquakes network. 

Table 1: The number of nodes, the values of the correlation 
exponent (µ) and the values of the Pearson correlation coefficient 
(r) of the networks of global earthquakes for the two datasets 
used in this work.

Network N µ r

Shallow 
earthquakes

28471 0.106 0.193

Deep earthquakes 8958 -0.0574 0.008

Conclusion

In this work, the assortativity of networks of worldwide 
earthquakes is studied for two datasets: one for shallow earthquakes 
and other for deep earthquakes. To do this, these complex networks 
were constructed using the successive model of connections 
between the vertices of the network and, then, two analyzes of 
the degree correlation were done: the average nearest neighbors’ 
degree of nodes (ANND) and the degree correlation coefficient 
(DCC). It was obtained that the network of shallow earthquakes is 
asssortative, similarly to the results found for networks constructed 
with data from California and Japan (regions with predominance 
of shallow earthquakes) and also for networks created using 
catalogs produced by the computational model proposed by Olami, 
Feder and Christensen (OFC model). On the other hand, the deep 
earthquakes network presented no correlation between the degree 
of the vertices. 

For future works, we plan to make these analyzes for global 
earthquake networks created with an improved methodology of 
linking the vertices of the networks to observe whether the results 
of assortative network for the shallow data and of neutral network 
for the deep data are maintained. The results will be published 
elsewhere.
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